Tead proteins activate the Foxa2 enhancer in the node in cooperation with a second factor.

نویسندگان

  • Atsushi Sawada
  • Yuriko Nishizaki
  • Hiroko Sato
  • Yukari Yada
  • Rika Nakayama
  • Shinji Yamamoto
  • Noriyuki Nishioka
  • Hisato Kondoh
  • Hiroshi Sasaki
چکیده

The cell population and the activity of the organizer change during the course of development. We addressed the mechanism of mouse node development via an analysis of the node/notochord enhancer (NE) of Foxa2. We first identified the core element (CE) of the enhancer, which in multimeric form drives gene expression in the node. The CE was activated in Wnt/beta-catenin-treated P19 cells with a time lag, and this activation was dependent on two separate sequence motifs within the CE. These same motifs were also required for enhancer activity in transgenic embryos. We identified the Tead family of transcription factors as binding proteins for the 3' motif. Teads and their co-factor YAP65 activated the CE in P19 cells, and binding of Tead to CE was essential for enhancer activity. Inhibition of Tead activity by repressor-modified Tead compromised NE enhancer activation and notochord development in transgenic mouse embryos. Furthermore, manipulation of Tead activity in zebrafish embryos led to altered expression of foxa2 in the embryonic shield. These results suggest that Tead activates the Foxa2 enhancer core element in the mouse node in cooperation with a second factor that binds to the 5' element, and that a similar mechanism also operates in the zebrafish shield.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of essential sequence motifs in the node/notochord enhancer of Foxa2 (Hnf3β) gene that are conserved across vertebrate species

The expression of a winged-helix transcription factor, Foxa2/HNF3beta, is essential for development of the node and the notochord. We examined the node/notochord enhancer of mouse Foxa2 for sequence motifs conserved across vertebrate species. We cloned Foxa2 genes from chicken and fish, and identified the respective node/notochord enhancers that were active in transgenic mouse embryos. Comparis...

متن کامل

Lhx1 functions together with Otx2, Foxa2, and Ldb1 to govern anterior mesendoderm, node, and midline development.

Gene regulatory networks controlling functional activities of spatially and temporally distinct endodermal cell populations in the early mouse embryo remain ill defined. The T-box transcription factor Eomes, acting downstream from Nodal/Smad signals, directly activates the LIM domain homeobox transcription factor Lhx1 in the visceral endoderm. Here we demonstrate Smad4/Eomes-dependent Lhx1 expr...

متن کامل

Inhibition of the TEF/TEAD transcription factor activity by nuclear calcium and distinct kinase pathways.

Transcription enhancer factor (TEF/TEAD) is a family of four transcription factors that share a common TEA-DNA binding domain and are involved in similar cellular functions, such as cell differentiation and proliferation. All adult tissues express at least one of the four TEAD genes, so this family of transcription factors may be of widespread importance, yet little is known about their regulat...

متن کامل

miR-92a promotes hepatocellular carcinoma cells proliferation and invasion by FOXA2 targeting

Objective(s): MicroRNAs (miRNAs) are considered as powerful, post-transcriptional regulators of gene expression in hepatocellular carcinoma cells (HCC). However, the function of miR-92a is still unclear in HCC. Materials and Methods: Expression of miR-92a in human HCC cell lines was evaluated using qRT-PCR. MTT assay and transwell assay were used to examine the function of miR-92a in HepG2 and ...

متن کامل

Differential expression of two TEF-1 (TEAD) genes during Xenopus laevis development and in response to inducing factors.

Transcription enhancer factors 1 (TEF-1 or TEAD) make a highly conserved family of eukaryotic DNA binding proteins that activate not only viral regulatory elements but muscle specific genes and are involved in several developmental processes. In this study, we report the identification and the expression pattern of NTEF-1 (TEAD1) and DTEF-1 (TEAD3), two members of this family in Xenopus laevis....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 132 21  شماره 

صفحات  -

تاریخ انتشار 2005